On the Quality of Compositional Prediction for Prospective Analytics on Graphs (Englisch)
- Neue Suche nach: Lyan, Gauthier
- Neue Suche nach: Amblard, David Gross
- Neue Suche nach: Jezequel, Jean-Marc
-
ISBN:
- Aufsatz (Konferenz) / Print
-
Titel:On the Quality of Compositional Prediction for Prospective Analytics on Graphs
-
Autor / Urheber:
-
Kongress:DEXA ; 32.; 2021; Online
-
Erschienen in:
-
Verlag:
- Neue Suche nach: Springer
-
Erscheinungsort:Cham
-
Erscheinungsdatum:2021
-
ISBN:
-
Medientyp:Aufsatz (Konferenz)
-
Format:Print
-
Sprache:Englisch
- Neue Suche nach: 54.38 / 54.64
- Weitere Informationen zu Basisklassifikation
-
Schlagwörter:
-
Klassifikation:
-
Datenquelle:
-
Exportieren:
-
Teilen:
-
Zitieren:
Die Inhaltsverzeichnisse werden automatisch erzeugt und basieren auf den im Index des TIB-Portals verfügbaren Einzelnachweisen der enthaltenen Beiträge. Die Anzeige der Inhaltsverzeichnisse kann daher unvollständig oder lückenhaft sein.
- 91
-
On the Quality of Compositional Prediction for Prospective Analytics on GraphsLyan, Gauthier / Amblard, David Gross / Jezequel, Jean-Marc | 2021
- 106
-
Semantic Influence Score: Tracing Beautiful Minds Through Knowledge Diffusion and Derivative WorksSridhar, Pragnya / Karanji, Deepika / Sampatrao, Gambhire Swati / Danda, Sravan / Saha, Snehanshu | 2021
- 119
-
Robust and Efficient Bio-Inspired Data-Sampling Prototype for Time-Series AnalysisLunglImayr, Michael / Lindorfer, Günther / Moser, Bernhard | 2021
- 127
-
Membership-Mappings for Data Representation Learning Measure Theoretic ConceptualizationKumar, Mohit / Moser, Bernhard / Fischer, Lukas / Freudenthaler, Bernhard | 2021
- 138
-
Membership-Mappings for Data Representation Learning: A Bregman Divergence Based Conditionally Deep AutoencoderKumar, Mohit / Moser, Bernhard / Fischer, Lukas / Freudenthaler, Bernhard | 2021
- 148
-
Data Catalogs: A Systematic Literature Review and Guidelines to ImplementationEhrlinger, Lisa / Schrott, Johannes / Melichar, Martin / Kirchmayr, Nicolas / Wöß, Wolfram | 2021
- 159
-
Task-Specific Automation ın Deep Leaming ProcessesBuchgeher, Georg / Czech, Gerald / Ribeiro, Adriano Souza / Kloihofer, Werner / Meloni, Paolo / Busia, Paola / Deriu, Gianfranco / Pintor, Maura / Biggio, Battista / Chesta, Cristina et al. | 2021
- 173
-
Approximate Fault Tolerance for Edge Stream ProcessingTakao, Daiki / Sugiura, Kento / Ishikawa, Yoshiharu | 2021
- 184
-
Deep Learning Rule for Efficient Changepoint Detection in the Presence of Non-Linear TrendsMahmoud, Salma / Martinez-Gil, Jorge / Praher, Patrick / Freudenthaler, Bernhard / Girkinger, Alexander | 2021
- 192
-
Time Series Pattern Discovery by Deep Leaming and Graph MiningRomanova, Alex | 2021
- 205
-
Integrating Gene Ontology Based Grouping and Ranking into the Machine Learning Algorithm for Gene Expression Data AnalysisYousef, Malik / Sayici, Ahmet / Bakir-Gungor, Burcu | 2021
- 215
-
SVM-RCE-R-OPT: Optimization of Scoring Function for SVM-RCE-RYousef, Malik / Jabeer, Amhar / Bakir-Gungor, Burcu | 2021
- 227
-
Short-Term Renewable Energy Forecasting in Greece Using Prophet Decomposition and Tree-Based EnsemblesVartholomaios, Argyrios / Karlos, Stamatis / Kouloumpris, Eleftherios / Tsoumakas, Grigorios | 2021
- 239
-
A Comparative Study of Deep Leaming Approaches for Day-Ahead Load Forecasting of an Electric Car FleetMohsenimanesh, Ahmad / Entchev, Evgueniy / Lapouchnian, Alexei / Ribberink, Hajo | 2021