Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure Information with Microorganism Metabolic Networks (Englisch)

In: Journal of Chemical Information and Modeling   ;  59 ,  3  ;  1109-1120  ;  2019

Wie erhalte ich diesen Titel?

Download Download
Kommerziell Vergütung an den Verlag: 46,97 € Grundgebühr: 4,00 € Gesamtpreis: 50,97 €
Akademisch Vergütung an den Verlag: 46,97 € Grundgebühr: 2,00 € Gesamtpreis: 48,97 €

Inhaltsverzeichnis – Band 59, Ausgabe 3

Zeige alle Jahrgänge und Ausgaben

Die Inhaltsverzeichnisse werden automatisch erzeugt und basieren auf den im Index des TIB-Portals verfügbaren Einzelnachweisen der enthaltenen Beiträge. Die Anzeige der Inhaltsverzeichnisse kann daher unvollständig oder lückenhaft sein.

945
Machine Learning in Drug Discovery
Klambauer, Günter / Hochreiter, Sepp / Rarey, Matthias | 2019
947
In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening
Sieg, Jochen / Flachsenberg, Florian / Rarey, Matthias | 2019
962
Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models
Sturm, Noé / Sun, Jiangming / Vandriessche, Yves / Mayr, Andreas / Klambauer, Günter / Carlsson, Lars / Engkvist, Ola / Chen, Hongming | 2019
973
In Silico Prediction of Endocrine Disrupting Chemicals Using Single-Label and Multilabel Models
Sun, Lixia / Yang, Hongbin / Cai, Yingchun / Li, Weihua / Liu, Guixia / Tang, Yun | 2019
983
Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling
Miyao, Tomoyuki / Funatsu, Kimito / Bajorath, Jürgen | 2019
993
Three-Dimensional Activity Landscape Models of Different Design and Their Application to Compound Mapping and Potency Prediction
Miyao, Tomoyuki / Funatsu, Kimito / Bajorath, Jürgen | 2019
1005
Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets
Zhou, Yadi / Cahya, Suntara / Combs, Steven A. / Nicolaou, Christos A. / Wang, Jibo / Desai, Prashant V. / Shen, Jie | 2019
1017
Molecular Structure Extraction from Documents Using Deep Learning
Staker, Joshua / Marshall, Kyle / Abel, Robert / McQuaw, Carolyn M. | 2019
1030
Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters
Stork, Conrad / Chen, Ya / Šícho, Martin / Kirchmair, Johannes | 2019
1044
DeepChemStable: Chemical Stability Prediction with an Attention-Based Graph Convolution Network
Li, Xiuming / Yan, Xin / Gu, Qiong / Zhou, Huihao / Wu, Di / Xu, Jun | 2019
1050
Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning
Yasuo, Nobuaki / Sekijima, Masakazu | 2019
1062
Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space
Sosnin, Sergey / Karlov, Dmitry / Tetko, Igor V. / Fedorov, Maxim V. | 2019
1073
Deep Learning-Based Prediction of Drug-Induced Cardiotoxicity
Cai, Chuipu / Guo, Pengfei / Zhou, Yadi / Zhou, Jingwei / Wang, Qi / Zhang, Fengxue / Fang, Jiansong / Cheng, Feixiong | 2019
1085
Computational Prediction of Site of Metabolism for UGT-Catalyzed Reactions
Cai, Yingchun / Yang, Hongbin / Li, Weihua / Liu, Guixia / Lee, Philip W. / Tang, Yun | 2019
1096
GuacaMol: Benchmarking Models for de Novo Molecular Design
Brown, Nathan / Fiscato, Marco / Segler, Marwin H.S. / Vaucher, Alain C. | 2019
1109
Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure Information with Microorganism Metabolic Networks
Nocedo-Mena, Deyani / Cornelio, Carlos / Camacho-Corona, María del Rayo / Garza-González, Elvira / Waksman de Torres, Noemi / Arrasate, Sonia / Sotomayor, Nuria / Lete, Esther / González-Díaz, Humbert | 2019
1121
Machine Learning Guided Atom Mapping of Metabolic Reactions
Litsa, Eleni E. / Peña, Matthew I. / Moll, Mark / Giannakopoulos, George / Bennett, George N. / Kavraki, Lydia E. | 2019
1136
De Novo Molecule Design by Translating from Reduced Graphs to SMILES
Pogány, Peter / Arad, Navot / Genway, Sam / Pickett, Stephen D. | 2019
1147
Prediction of Membrane Permeation of Drug Molecules by Combining an Implicit Membrane Model with Machine Learning
Brocke, Stephanie A. / Degen, Alexandra / MacKerell, Alexander D. / Dutagaci, Bercem / Feig, Michael | 2019
1163
Accurate Prediction of Biological Assays with High-Throughput Microscopy Images and Convolutional Networks
Hofmarcher, Markus / Rumetshofer, Elisabeth / Clevert, Djork-Arné / Hochreiter, Sepp / Klambauer, Günter | 2019
1172
PathwayMap: Molecular Pathway Association with Self-Normalizing Neural Networks
Jiménez, José / Sabbadin, Davide / Cuzzolin, Alberto / Martínez-Rosell, Gerard / Gora, Jacob / Manchester, John / Duca, José / De Fabritiis, Gianni | 2019
1182
De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping
Sattarov, Boris / Baskin, Igor I. / Horvath, Dragos / Marcou, Gilles / Bjerrum, Esben Jannik / Varnek, Alexandre | 2019
1197
Imputation of Assay Bioactivity Data Using Deep Learning
Whitehead, T. M. / Irwin, B. W. J. / Hunt, P. / Segall, M. D. / Conduit, G. J. | 2019
1205
Shape-Based Generative Modeling for de Novo Drug Design
Skalic, Miha / Jiménez, José / Sabbadin, Davide / De Fabritiis, Gianni | 2019
1215
Computational Prediction of a New ADMET Endpoint for Small Molecules: Anticommensal Effect on Human Gut Microbiota
Zheng, Suqing / Chang, Wenping / Liu, Wenxin / Liang, Guang / Xu, Yong / Lin, Fu | 2019
1221
Drug Discovery Maps, a Machine Learning Model That Visualizes and Predicts Kinome–Inhibitor Interaction Landscapes
Janssen, Antonius P. A. / Grimm, Sebastian H. / Wijdeven, Ruud H. M. / Lenselink, Eelke B. / Neefjes, Jacques / van Boeckel, Constant A. A. / van Westen, Gerard J. P. / van der Stelt, Mario | 2019
1230
Accurate Hit Estimation for Iterative Screening Using Venn–ABERS Predictors
Buendia, Ruben / Kogej, Thierry / Engkvist, Ola / Carlsson, Lars / Linusson, Henrik / Johansson, Ulf / Toccaceli, Paolo / Ahlberg, Ernst | 2019
1238
The Development of Target-Specific Machine Learning Models as Scoring Functions for Docking-Based Target Prediction
Nogueira, Mauro S. / Koch, Oliver | 2019
1253
Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets
Wenzel, Jan / Matter, Hans / Schmidt, Friedemann | 2019
1269
Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Prediction Errors for Deep Neural Networks
Cortés-Ciriano, Isidro / Bender, Andreas | 2019
Issue Publication Information
| 2019
Issue Editorial Masthead
| 2019