Transaction credit in the unstructured crowd transaction network (Englisch)

Freier Zugriff
in International Journal of Crowd Science ; 3 , 3 ; 267-283
International Journal of Crowd Science

Current models of transaction credit in the e-commerce network face many problems, such as the one-sided measurement, low accuracy and insufficient anti-aggression solutions. This paper aims to address these problems by studying the transaction credit problem in the crowd transaction network.


This study divides the transaction credit into two parts, direct transaction credit and recommended transaction credit, and it proposes a model based on the crowd transaction network. The direct transaction credit comprehensively includes various factors influencing the transaction credit, including transaction evaluation, transaction time, transaction status, transaction amount and transaction times. The recommendation transaction credit introduces two types of recommendation nodes and constructs the recommendation credibility for each type. This paper also proposes a “buyer + circle of friends” method to store and update the transaction credit data.


The simulation results show that this model is superior with high accuracy and anti-aggression.


The direct transaction credit improves the accuracy of the transaction credit data. The recommendation transaction credit strengthens the anti-aggression of the transaction credit data. In addition, the “buyer + circle of friends” method fully uses the computing of the storage ability of the internet, and it also solves the failure problem of using a single node.

Wie erhalte ich diesen Titel?


Inhaltsverzeichnis – Band 3, Ausgabe 3

Zeige alle Jahrgänge und Ausgaben

Die Inhaltsverzeichnisse werden automatisch erzeugt und basieren auf den im Index des TIB-Portals verfügbaren Nachweisen der enthaltenen Aufsätze. Die Anzeige der Jahrgänge kann aufgrund fehlender Aufsatznachweise unvollständig oder lückenhaft sein, obwohl die Zeitschrift komplett in der TIB verfügbar ist.

Quality assessment in crowdsourced classification tasks
Bu, Qiong / Simperl, Elena / Chapman, Adriane / Maddalena, Eddy | 2019
Intelligence level analysis for crowd networks based on business entropy
Li, Zhouxia / Pan, Zhiwen / Wang, Xiaoni / Ji, Wen / Yang, Feng | 2019
Transaction credit in the unstructured crowd transaction network
Liu, Zhishuo / Fang, Tian / Dongxin, Yao / Kou, Nianci | 2019
Adaptive information sharing approach for crowd networks based on two stage optimization
Wang, Xiaoni / Pan, Zhiwen / Li, Zhouxia / Ji, Wen / Yang, Feng | 2019
Minimizing the influence of dynamic rumors based on community structure
Wu, Qingqing / Zhao, Xianguan / Zhou, Lihua / Wang, Yao / Yang, Yudi | 2019
Knowledge discovery in sociological databases
Pan, Zhiwen / Li, Jiangtian / Chen, Yiqiang / Pacheco, Jesus / Dai, Lianjun / Zhang, Jun | 2019
An anomaly detection method to improve the intelligent level of smart articles based on multiple group correlation probability models
Lu, Xudong / Wang, Shipeng / Kang, Fengjian / Liu, Shijun / Li, Hui / Xu, Xiangzhen / Cui, Lizhen | 2019
Expert recommendation in community question answering: a review and future direction
Yang, Zhengfa / Liu, Qian / Sun, Baowen / Zhao, Xin | 2019

Ähnliche Titel