Markov logic networks (Englisch)

In: Machine Learning   ;  62 ,  1  ;  107-136  ;  2006

Wie erhalte ich diesen Titel?

Freier Zugriff

Abstract We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach.

Inhaltsverzeichnis – Band 62, Ausgabe 1

Zeige alle Jahrgänge und Ausgaben

Die Inhaltsverzeichnisse werden automatisch erzeugt und basieren auf den im Index des TIB-Portals verfügbaren Einzelnachweisen der enthaltenen Beiträge. Die Anzeige der Inhaltsverzeichnisse kann daher unvollständig oder lückenhaft sein.

Introduction to the special issue on multi-relational data mining and statistical relational learning
Blockeel, Hendrik / Jensen, David / Kramer, Stefan | 2006
PRL: A probabilistic relational language
Getoor, Lise / Grant, John | 2006
Propositionalization-based relational subgroup discovery with RSD
Železný, Filip / Lavrač, Nada | 2006
Distribution-based aggregation for relational learning with identifier attributes
Perlich, Claudia / Provost, Foster | 2006
Markov logic networks
Richardson, Matthew / Domingos, Pedro | 2006
XRules: An effective algorithm for structural classification of XML data
Zaki, Mohammed J. / Aggarwal, Charu C. | 2006