Multilevel Cloth Simulation using GPU Surface Sampling (English)

in Workshop on Virtual Reality Interaction and Physical Simulation
Workshop on Virtual Reality Interaction and Physical Simulation

Today most cloth simulation systems use triangular mesh models. However, regular grids allow many optimizations as connectivity is implicit, warp and weft directions of the cloth are aligned to grid edges and distances between particles are equal. In this paper we introduce a cloth simulation that combines both model types. All operations that are performed on the CPU use a low-resolution triangle mesh while GPU-based methods are performed efficiently on a high-resolution grid representation. Both models are coupled by a sampling operation which renders triangle vertex data into a texture and by a corresponding projection of texel data onto a mesh. The presented scheme is very flexible and allows individual components to be performed on different architectures, data representations and detail levels. The results are combined using shader programs which causes a negligible overhead. We have implemented CPU-based collision handling and a GPU-based hierarchical constraint solver to simulate systems with more than 230k particles in real-time.

How to get this document?
Commercial Copyright fee: €14.50 Basic fee: €4.00 Total price: €18.50
Academic Copyright fee: €4.50 Basic fee: €2.00 Total price: €6.50

Document information

Table of contents conference proceedings

The table of contents of the conference proceedings is generated automatically, so it can be incomplete, although all articles are available in the TIB.

Physics-based Human Neck Simulation
Luo, Zhiping / Pronost, Nicolas / Egges, Arjan | 2013
Parallel Collision Detection in Constant Time
Weller, Rene / Frese, Udo / Zachmann, Gabriel | 2013
Multilevel Cloth Simulation using GPU Surface Sampling
Schmitt, Nikolas / Knuth, Martin / Bender, Jan / Kuijper, Arjan | 2013
Physically-Based Character Skinning
Deul, Crispin / Bender, Jan | 2013
Rethinking Shortest Path: An Energy Expenditure Approach
Mousas, Christos / Newbury, Paul / Anagnostopoulos, Christos-Nikolaos | 2013
Exploring the Use of Adaptively Restrained Particles for Graphics Simulations
Manteaux, Pierre-Luc / Faure, François / Redon, Stéphane / Cani, Marie-Paule | 2013
Connective Tissues Simulation on GPU
Bosman, Julien / Duriez, Christian / Cotin, Stéphane | 2013
RPI-MATLAB-Simulator: A Tool for Efficient Research and Practical Teaching in Multibody Dynamics
Williams, Jedediyah / Lu, Ying / Niebe, Sarah / Andersen, Michael / Erleben, Kenny / Trinkle, Jeffrey C. | 2013
Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM
Huber, Linda | 2013
Tridiagonal Matrix Formulation for Inextensible Hair Strand Simulation
Han, Dongsoo / Harada, Takahiro | 2013

Similar titles