Connective Tissues Simulation on GPU (English)

How to get this document?

Commercial Copyright fee: €14.50 Basic fee: €4.00 Total price: €18.50
Academic Copyright fee: €4.50 Basic fee: €2.00 Total price: €6.50

Recent work in the field of medical simulation have led to real advances in the mechanical simulation of organs. However, it is important to notice that, despite the major role they may have in the interaction between organs, the connective tissues are often left out of these simulations. In this paper, we propose a model which can rely on either a mesh based or a meshless methods. To provide a realistic simulation of these tissues, our work is based on the weak form of continuum mechanics equations for hyperelastic soft materials. Furthermore, the stability of deformable objects simulation is ensured by an implicit temporal integration scheme. Our method allows to model these tissues without prior assumption on the dimension of their of their geometry (curve, surface or volume), and enables mechanical coupling between organs. To obtain an interactive frame rate, we develop a parallel version suitable for to GPU computation. Finally we demonstrate the proper convergence of our finite element scheme.

Table of contents conference proceedings

The tables of contents are generated automatically and are based on the data records of the individual contributions available in the index of the TIB portal. The display of the Tables of Contents may therefore be incomplete.

Rethinking Shortest Path: An Energy Expenditure Approach
Mousas, Christos / Newbury, Paul / Anagnostopoulos, Christos-Nikolaos | 2013
Exploring the Use of Adaptively Restrained Particles for Graphics Simulations
Manteaux, Pierre-Luc / Faure, François / Redon, Stéphane / Cani, Marie-Paule | 2013
RPI-MATLAB-Simulator: A Tool for Efficient Research and Practical Teaching in Multibody Dynamics
Williams, Jedediyah / Lu, Ying / Niebe, Sarah / Andersen, Michael / Erleben, Kenny / Trinkle, Jeffrey C. | 2013
Connective Tissues Simulation on GPU
Bosman, Julien / Duriez, Christian / Cotin, Stéphane | 2013
Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM
Huber, Linda | 2013
Tridiagonal Matrix Formulation for Inextensible Hair Strand Simulation
Han, Dongsoo / Harada, Takahiro | 2013
Parallel Collision Detection in Constant Time
Weller, Rene / Frese, Udo / Zachmann, Gabriel | 2013
Physics-based Human Neck Simulation
Luo, Zhiping / Pronost, Nicolas / Egges, Arjan | 2013
Multilevel Cloth Simulation using GPU Surface Sampling
Schmitt, Nikolas / Knuth, Martin / Bender, Jan / Kuijper, Arjan | 2013
Physically-Based Character Skinning
Deul, Crispin / Bender, Jan | 2013