RPI-MATLAB-Simulator: A Tool for Efficient Research and Practical Teaching in Multibody Dynamics (English)

How to get this document?

Commercial Copyright fee: €14.50 Basic fee: €4.00 Total price: €18.50
Academic Copyright fee: €4.50 Basic fee: €2.00 Total price: €6.50

We present the RPI-MATLAB-Simulator (RPIsim) as an open source tool for research and education in multibody dynamics. RPIsim is designed and organized to be extended. Its modular design allows users to edit or add new components without worrying about extra implementation details. RPIsim has two main goals: 1. Provide an intuitive and easily extendable platform for research and education in multibody dynamics; 2. Maintain an evolving code base of useful algorithms and analysis tools for multibody dynamics problems. Although research often focuses on a specific subset of problems, work too often begins with developing software in a broader scope simply to realize a test bed for research to begin. It is our hope that RPIsim alleviates some of this burden by decreasing development time, thusly increasing efficiency in research. Further, we aim to provide a practical teaching tool. Because it is a fully working simulator, and since it offers the instant gratification of visualized contact dynamics, RPIsim offers students the opportunity to experiment and explore dynamics in the powerful environment of MATLAB. With multiple built-in simulation methods, and support for a simulation data convention, RPIsim facilitates the fair comparison of methods, including those being developed with RPIsim.

Table of contents conference proceedings

The tables of contents are generated automatically and are based on the data records of the individual contributions available in the index of the TIB portal. The display of the Tables of Contents may therefore be incomplete.

Rethinking Shortest Path: An Energy Expenditure Approach
Mousas, Christos / Newbury, Paul / Anagnostopoulos, Christos-Nikolaos | 2013
Physics-based Human Neck Simulation
Luo, Zhiping / Pronost, Nicolas / Egges, Arjan | 2013
Multilevel Cloth Simulation using GPU Surface Sampling
Schmitt, Nikolas / Knuth, Martin / Bender, Jan / Kuijper, Arjan | 2013
Parallel Collision Detection in Constant Time
Weller, Rene / Frese, Udo / Zachmann, Gabriel | 2013
Physically-Based Character Skinning
Deul, Crispin / Bender, Jan | 2013
Exploring the Use of Adaptively Restrained Particles for Graphics Simulations
Manteaux, Pierre-Luc / Faure, François / Redon, Stéphane / Cani, Marie-Paule | 2013
RPI-MATLAB-Simulator: A Tool for Efficient Research and Practical Teaching in Multibody Dynamics
Williams, Jedediyah / Lu, Ying / Niebe, Sarah / Andersen, Michael / Erleben, Kenny / Trinkle, Jeffrey C. | 2013
Connective Tissues Simulation on GPU
Bosman, Julien / Duriez, Christian / Cotin, Stéphane | 2013
Initial Steps for the Coupling of JavaScript Physics Engines with X3DOM
Huber, Linda | 2013
Tridiagonal Matrix Formulation for Inextensible Hair Strand Simulation
Han, Dongsoo / Harada, Takahiro | 2013