Texture Compression using Low-Frequency Signal Modulation (English)

In: Graphics Hardware   ;  84-91  ;  2003

How to get this document?

Download
Commercial Copyright fee: €14.50 Basic fee: €4.00 Total price: €18.50
Academic Copyright fee: €4.50 Basic fee: €2.00 Total price: €6.50

This paper presents a new, lossy texture compression technique that is suited to implementation on low-cost, low-bandwidth devices as well as more powerful rendering systems. It uses a representation that is based on the blending of two (or more) `low frequency' signals using a high frequency but low precision modulation signal. Continuity of the low frequency signals helps to avoid block artefacts. Decompression costs are kept low through use of fixed-rate encoding and by eliminating indirect data access, as needed with Vector Quantisation schemes. Good quality reproduction of (A)RGB textures is achieved with a choice of 4bpp or 2bpp representations.

  • Title:
    Texture Compression using Low-Frequency Signal Modulation
  • Author / Creator:
  • Published in:
  • Publisher:
    The Eurographics Association
  • Place of publication:
    Postfach 8043, 38621 Goslar, Germany
  • Year of publication:
    2003
  • Size:
    8 pages
  • ISBN:
  • ISSN:
  • DOI:
  • Type of media:
    Conference paper
  • Type of material:
    Electronic Resource
  • Language:
    English
  • Source:
  • Export:
  • ORKG:

Table of contents conference proceedings

The tables of contents are generated automatically and are based on the data records of the individual contributions available in the index of the TIB portal. The display of the Tables of Contents may therefore be incomplete.

7
Automatic Shader Level of Detail
Olano, Marc / Kuehne, Bob / Simmons, Maryann | 2003
15
Mesh Mutation in Programmable Graphics Hardware
Shiue, Le-Jeng / Goel, Vineet / Peters, Jorg | 2003
25
CULLIDE: Interactive Collision Detection Between Complex Models in Large Environments using Graphics Hardware
Govindaraju, Naga K. / Redon, Stephane / Lin, Ming C. / Manocha, Dinesh | 2003
33
An Optimized Soft Shadow Volume Algorithm with Real-Time Performance
Assarsson, Ulf / Dougherty, Michael / Mounier, Michael / Akenine-Möller, Tomas | 2003
41
Photon Mapping on Programmable Graphics Hardware
Purcell, Timothy J. / Donner, Craig / Cammarano, Mike / Jensen, Henrik Wann / Hanrahan, Pat | 2003
51
GPU Algorithms for Radiosity and Subsurface Scattering
Carr, Nathan A. / Hall, Jesse D. / Hart, John C. | 2003
60
3D Graphics LSI Core for Mobile Phone "Z3D"
Kameyama, Masatoshi / Kato, Yoshiyuki / Fujimoto, Hitoshi / Negishi, Hiroyasu / Kodama, Yukio / Inoue, Yoshitsugu / Kawai, Hiroyuki | 2003
68
An Effective Hardware Architecture for Bump Mapping Using Angular Operation
Lee, S. G. / Park, W. C. / Lee, W. J. / Han, T. D. / Yang, S. B. | 2003
76
VoxelCache: A Cache-Based Memory Architecture for Volume Graphics
Kanus, U. / Wetekam, G. / Hirche, J. | 2003
84
Texture Compression using Low-Frequency Signal Modulation
Fenney, Simon | 2003
92
Simulation of Cloud Dynamics on Graphics Hardware
Harris, Mark J. / III, William V. Baxter / Scheuermann, Thorsten / Lastra, Anselmo | 2003
102
A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware
Goodnight, Nolan / Woolley, Cliff / Lewin, Gregory / Luebke, David / Humphreys, Greg | 2003
112
The FFT on a GPU
Moreland, Kenneth / Angel, Edward | 2003