Simulation of Cloud Dynamics on Graphics Hardware (English)

In: Graphics Hardware   ;  92-101  ;  2003

How to get this document?

Download
Commercial Copyright fee: €14.50 Basic fee: €4.00 Total price: €18.50
Academic Copyright fee: €4.50 Basic fee: €2.00 Total price: €6.50

This paper presents a physically-based, visually-realistic interactive cloud simulation. Clouds in our system are modeled using partial differential equations describing fluid motion, thermodynamic processes, buoyant forces, and water phase transitions. We also simulate the interaction of clouds with light, including self-shadowing and light scattering. We implement both simulations - dynamic and radiometric - entirely on programmable floating-point graphics hardware. We use "flat 3D textures" - 3D data laid out as slices tiled in a 2D texture - to implement 3D simulations on the GPU. This has scalability advantages over the use of traditional 3D textures. We exploit the relatively slow evolution of clouds in calm skies to enable interactive visualization of the simulation. The work required to simulate a single time step is automatically spread over many frames while the user views the results of the previous time step. This technique enables the incorporation of our simulation into real applications without sacrificing interactivity.

  • Title:
    Simulation of Cloud Dynamics on Graphics Hardware
  • Author / Creator:
  • Published in:
  • Publisher:
    The Eurographics Association
  • Place of publication:
    Postfach 8043, 38621 Goslar, Germany
  • Year of publication:
    2003
  • Size:
    10 pages
  • ISBN:
  • ISSN:
  • DOI:
  • Type of media:
    Conference paper
  • Type of material:
    Electronic Resource
  • Language:
    English
  • Source:
  • Export:
  • ORKG:

Table of contents conference proceedings

The tables of contents are generated automatically and are based on the data records of the individual contributions available in the index of the TIB portal. The display of the Tables of Contents may therefore be incomplete.

7
Automatic Shader Level of Detail
Olano, Marc / Kuehne, Bob / Simmons, Maryann | 2003
15
Mesh Mutation in Programmable Graphics Hardware
Shiue, Le-Jeng / Goel, Vineet / Peters, Jorg | 2003
25
CULLIDE: Interactive Collision Detection Between Complex Models in Large Environments using Graphics Hardware
Govindaraju, Naga K. / Redon, Stephane / Lin, Ming C. / Manocha, Dinesh | 2003
33
An Optimized Soft Shadow Volume Algorithm with Real-Time Performance
Assarsson, Ulf / Dougherty, Michael / Mounier, Michael / Akenine-Möller, Tomas | 2003
41
Photon Mapping on Programmable Graphics Hardware
Purcell, Timothy J. / Donner, Craig / Cammarano, Mike / Jensen, Henrik Wann / Hanrahan, Pat | 2003
51
GPU Algorithms for Radiosity and Subsurface Scattering
Carr, Nathan A. / Hall, Jesse D. / Hart, John C. | 2003
60
3D Graphics LSI Core for Mobile Phone "Z3D"
Kameyama, Masatoshi / Kato, Yoshiyuki / Fujimoto, Hitoshi / Negishi, Hiroyasu / Kodama, Yukio / Inoue, Yoshitsugu / Kawai, Hiroyuki | 2003
68
An Effective Hardware Architecture for Bump Mapping Using Angular Operation
Lee, S. G. / Park, W. C. / Lee, W. J. / Han, T. D. / Yang, S. B. | 2003
76
VoxelCache: A Cache-Based Memory Architecture for Volume Graphics
Kanus, U. / Wetekam, G. / Hirche, J. | 2003
84
Texture Compression using Low-Frequency Signal Modulation
Fenney, Simon | 2003
92
Simulation of Cloud Dynamics on Graphics Hardware
Harris, Mark J. / III, William V. Baxter / Scheuermann, Thorsten / Lastra, Anselmo | 2003
102
A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware
Goodnight, Nolan / Woolley, Cliff / Lewin, Gregory / Luebke, David / Humphreys, Greg | 2003
112
The FFT on a GPU
Moreland, Kenneth / Angel, Edward | 2003