Efficient Breast Deformation Simulation (English)

How to get this document?

Commercial Copyright fee: €14.50 Basic fee: €4.00 Total price: €18.50
Academic Copyright fee: €4.50 Basic fee: €2.00 Total price: €6.50

Breast surgery might benefit from image guidance, if position and extend of the disease could be visualized in the same breast deformation as the surgery is performed. Such visualizations, however, are challenging to obtain, since the positioning for image acquisition in MRI is prone, while the patient lies supine for surgical procedures, causing a considerable deformation of the breasts between the two states. In our contribution, we outline a set of novel algorithms and methods to improve an efficient simulation of breast deformation between the prone image and the supine surgery positioning. In particular, we propose several extensions to a highly efficient dynamic corotated finite element method (FEM), namely non-linear material properties, the sliding of the breast tissue on the chest wall, and a fine-tuning step to align the breast model to a measured surface. All extensions are carefully designed to keep the efficiency and stability of the approach, and thus to allow their application in clinical routine. We explore all novel techniques using synthetic and volunteer prone and supine breast MRI data and assess their feasibility towards accurate, yet efficient simulation of large breast deformations.

Table of contents conference proceedings

The tables of contents are generated automatically and are based on the data records of the individual contributions available in the index of the TIB portal. The display of the Tables of Contents may therefore be incomplete.

An Implicit Tensor-Mass Solver on the GPU for Soft Bodies Simulation
Faure, Xavier / Zara, Florence / Jaillet, Fabrice / Moreau, Jean-Michel | 2012
Mapping Volumetric Meshes to Point-based Motion Models
Jund, Thomas / Allaoui, Ali / Darles, Emmanuelle / Skapin, Xavier / Meseure, Philippe / Luciani, Annie | 2012
Efficient Cloth Simulation Using an Adaptive Finite Element Method
Bender, Jan / Deul, Crispin | 2012
Physics-based Augmented Reality for 3D Deformable Object
Haouchine, Nazim / Dequidt, Jérémie / Kerrien, Erwan / Berger, Marie-Odile / Cotin, Stéphane | 2012
Fast Simulation of Inextensible Hair and Fur
Müller, Matthias / Kim, Tae-Yong / Chentanez, Nuttapong | 2012
Real-time Hair Simulation with Efficient Hair Style Preservation
Han, Dongsoo / Harada, Takahiro | 2012
High-Resolution Simulation of Granular Material with SPH
Ihmsen, Markus / Wahl, Arthur / Teschner, Matthias | 2012
An Efficient Surface Reconstruction Pipeline for Particle-Based Fluids
Akinci, Gizem / Akinci, Nadir / Ihmsen, Markus / Teschner, Matthias | 2012
A Packed Memory Array to Keep Moving Particles Sorted
Durand, Marie / Raffin, Bruno / Faure, François | 2012
Real-Time Motion Synthesis for Multiple Goal-Directed Tasks Using Motion Layers
Mousas, Christos / Newbury, Paul | 2012
Synthesizing Balancing Character Motions
Kenwright, Ben | 2012
Generic Spine Model with Simple Physics for Life-Like Quadrupeds and Reptiles
Karim, Ahmad Abdul / Meyer, Alexandre / Gaudin, Thibaut / Buendia, Axel / Bouakaz, Saida | 2012
Bézier Shell Finite Element for Interactive Surgical Simulation
Golembiovský, Tomá¹ / Duriez, Christian | 2012
Efficient Breast Deformation Simulation
Harz, Markus T. / Georgii, Joachim / Wang, Lei / Schilling, Kathy / Peitgen, Heinz-Otto | 2012
OCTAVIS: An Easy-to-Use VR-System for Clinical Studies
Dyck, Eugen / Zell, Eduard / Kohsik, Agnes / Grewe, Philip / Winter, York / Piefke, Martina / Botsch, Mario | 2012
Policies for Goal Directed Multi-Finger Manipulation
Andrews, Sheldon / Kry, Paul G. | 2012
3D Mobility Learning and Regression of Articulated, Tracked Robotic Vehicles by Physics-based Optimization
Papadakis, Panagiotis / Pirri, Fiora | 2012