There is an Open Access version for this licensed article that can be read free of charge and without license restrictions. The content of the Open Access version may differ from that of the licensed version.
Pricing information
Please choose your delivery country and your customer group
We propose a method to create higher orbital states of ultracold atoms in the Mott regime of an optical lattice. This is done by periodically modulating the position of the trap minima (known as shaking) and controlling the interference term of the lasers creating the lattice. These methods are combined with techniques of shortcuts to adiabaticity. As an example of this, we show specifically how to create an anti-ferromagnetic type ordering of angular momentum states of atoms. The specific pulse sequences are designed using Lewis-Riesenfeld invariants and a four-level model for each well. The results are compared with numerical simulations of the full Schroedinger equation.