Modeling Luminance Perception at Absolute Threshold (English)

In: Computer Graphics Forum   ;  34 ,  4  ;  155-164  ;  2015

How to get this document?

Download
Commercial Copyright fee: €35.92 Basic fee: €4.00 Total price: €39.92
Academic Copyright fee: €35.92 Basic fee: €2.00 Total price: €37.92

When human luminance perception operates close to its absolute threshold, i. e., the lowest perceivable absolute values, appearance changes substantially compared to common photopic or scotopic vision. In particular, most observers report perceiving temporally‐varying noise. Two reasons are physiologically plausible; quantum noise (due to the low absolute number of photons) and spontaneous photochemical reactions. Previously, static noise with a normal distribution and no account for absolute values was combined with blue hue shift and blur to simulate scotopic appearance on a photopic display for movies and interactive applications (e.g., games). We present a computational model to reproduce the specific distribution and dynamics of “scotopic noise” for specific absolute values. It automatically introduces a perceptually‐calibrated amount of noise for a specific luminance level and supports animated imagery. Our simulation runs in milliseconds at HD resolution using graphics hardware and favorably compares to simpler alternatives in a perceptual experiment.

Table of contents – Volume 34, Issue 4

Show all volumes and issues

The tables of contents are generated automatically and are based on the data records of the individual contributions available in the index of the TIB portal. The display of the Tables of Contents may therefore be incomplete.

1
Stochastic Soft Shadow Mapping
Liktor, G. / Spassov, S. / Mückl, G. / Dachsbacher, C. | 2015
13
Portal‐Masked Environment Map Sampling
Bitterli, Benedikt / Novák, Jan / Jarosz, Wojciech | 2015
21
Extracting Microfacet‐based BRDF Parameters from Arbitrary Materials with Power Iterations
Dupuy, Jonathan / Heitz, Eric / Iehl, Jean‐Claude / Poulin, Pierre / Ostromoukhov, Victor | 2015
31
Physically Meaningful Rendering using Tristimulus Colours
Meng, Johannes / Simon, Florian / Hanika, Johannes / Dachsbacher, Carsten | 2015
41
Consistent Scene Editing by Progressive Difference Images
Günther, Tobias / Grosch, Thorsten | 2015
53
Unifying Color and Texture Transfer for Predictive Appearance Manipulation
Okura, Fumio / Vanhoey, Kenneth / Bousseau, Adrien / Efros, Alexei A. / Drettakis, George | 2015
65
Improved Half Vector Space Light Transport
Hanika, Johannes / Kaplanyan, Anton / Dachsbacher, Carsten | 2015
75
Probabilistic Connections for Bidirectional Path Tracing
Popov, Stefan / Ramamoorthi, Ravi / Durand, Fredo / Drettakis, George | 2015
87
Manifold Next Event Estimation
Hanika, Johannes / Droske, Marc / Fascione, Luca | 2015
99
Smooth Loops from Unconstrained Video
Sevilla‐Lara, L. / Wulff, J. / Sunkavalli, K. / Shechtman, E. | 2015
109
Radiometric Transfer: Example‐based Radiometric Linearization of Photographs
Li, Han / Peers, Pieter | 2015
119
Motion Aware Exposure Bracketing for HDR Video
Gryaditskaya, Yulia / Pouli, Tania / Reinhard, Erik / Myszkowski, Karol / Seidel, Hans‐Peter | 2015
131
Path‐space Motion Estimation and Decomposition for Robust Animation Filtering
Zimmer, Henning / Rousselle, Fabrice / Jakob, Wenzel / Wang, Oliver / Adler, David / Jarosz, Wojciech / Sorkine‐Hornung, Olga / Sorkine‐Hornung, Alexander | 2015
143
Wavelet Point‐Based Global Illumination
Wang, Beibei / Meng, Xiangxu / Boubekeur, Tamy | 2015
155
Modeling Luminance Perception at Absolute Threshold
Kellnhofer, Petr / Ritschel, Tobias / Myszkowski, Karol / Eisemann, Elmar / Seidel, Hans‐Peter | 2015
165
Illumination‐driven Mesh Reduction for Accelerating Light Transport Simulations
Reich, Andreas / Günther, Tobias / Grosch, Thorsten | 2015
i
Frontmatter
| 2015
Feedback